chatAI4R: Chat-Based Interactive Artificial Intelligence for R 
Version 1.1.0 - Linux Installation Improvements & CI/CD Integration
GitHub/chatAI4R
Description
chatAI4R, Chat-based Interactive Artificial Intelligence for R, is an R package designed to integrate the OpenAI API and other APIs for artificial intelligence (AI) applications. This package leverages large language model (LLM)-based AI techniques, enabling efficient knowledge discovery and data analysis. chatAI4R provides basic R functions for using LLM and a set of R functions to support the creation of prompts for using LLM. The LLMs allow us to extend the world of R. Additionally, I strongly believe that the LLM is becoming so generalized that βAre you searching Google?β is likely to evolve into βAre you LLMing?β.
chatAI4R is an experimental project aimed at developing and implementing various LLM applications in R. Furthermore, the package is under continuous development with a focus on extending its capabilities for bioinformatics analysis.
π― Who is this for?
- R package developers - automate documentation (Roxygen2), generate functions, improve code quality
- Data analysts - interpret statistical results, process literature, extract insights
Key Difference: Not just an API wrapper - provides a 4-layer architecture from basic API access to expert-level workflows and domain-specific analysis tools.
β¨ Key Features
π Multi-API Support (6 AI Services)
- OpenAI (ChatGPT, GPT-4, Vision, Embeddings)
- Google Gemini (Gemini models with search grounding)
- io.net (23+ models including DeepSeek-R1, Llama-4, Qwen3, Mistral)
- Replicate (Open-source models)
- Dify (Workflow-based AI)
- DeepL (Professional translation)
ποΈ 4-Layer Architecture (Beyond Simple API Wrapper)
Layer 1 - Core: Direct API access (chat4R, gemini4R, multiLLMviaionet)
Layer 2 - Usage: Conversation memory, text processing (conversation4R, proofreadText)
Layer 3 - Workflow: Multi-bot systems, R package automation (discussion_flow_v1, autocreateFunction4R)
Layer 4 - Expertise: Domain-specific analysis (interpretResult with 13 domains, geminiGrounding4R)
π Production-Ready Security
- HTTP status validation and error handling
- Null-safe JSON parsing
- Input validation with informative error messages
- No credential exposure in logs
Note: Translation features separated to deepRstudio package. Image generation features in stableDiffusion4R package.
Installation of the chatAI4R package
1. Start R / RStudio console.
2. Run the following commands in the R console:
CRAN-version installation
# CRAN-version installation
install.packages("chatAI4R")
library(chatAI4R)
Dev-version installation (Recommended)
# Dev-version installation
devtools::install_github("kumeS/chatAI4R")
library(chatAI4R)
Installation from source
#For MacOS X, installation from source
system("wget https://github.com/kumeS/chatAI4R/archive/refs/tags/v0.2.3.tar.gz")
#or system("wget https://github.com/kumeS/chatAI4R/archive/refs/tags/v0.2.3.tar.gz --no-check-certificate")
system("R CMD INSTALL v0.2.3.tar.gz")
4. Set the API keys for Multi-API Support
chatAI4R supports multiple AI APIs. Configure the APIs you want to use:
Required: OpenAI API (for most functions)
Register at OpenAI website and obtain your API key.
# Set your OpenAI API key (required)
Sys.setenv(OPENAI_API_KEY = "sk-your-openai-api-key")
Optional: Additional AI APIs (for extended functions)
# Google Gemini API (for gemini4R, geminiGrounding4R)
Sys.setenv(GoogleGemini_API_KEY = "your-gemini-api-key")
# Replicate API (for replicatellmAPI4R)
Sys.setenv(Replicate_API_KEY = "your-replicate-api-key")
# Dify API (for DifyChat4R)
Sys.setenv(DIFY_API_KEY = "your-dify-api-key")
# DeepL API (for discussion_flow functions with translation)
Sys.setenv(DeepL_API_KEY = "your-deepl-api-key")
# io.net API (for multiLLMviaionet functions)
Sys.setenv(IONET_API_KEY = "your-ionet-api-key")
Permanent Configuration
Create an .Rprofile file in your home directory and add your API keys:
# Create a file
file.create("~/.Rprofile")
# Add all your API keys to the file
cat('
# chatAI4R API Keys Configuration
Sys.setenv(OPENAI_API_KEY = "sk-your-openai-api-key")
Sys.setenv(GoogleGemini_API_KEY = "your-gemini-api-key")
Sys.setenv(Replicate_API_KEY = "your-replicate-api-key")
Sys.setenv(DIFY_API_KEY = "your-dify-api-key")
Sys.setenv(DeepL_API_KEY = "your-deepl-api-key")
Sys.setenv(IONET_API_KEY = "your-ionet-api-key")
', file = "~/.Rprofile", append = TRUE)
# [MacOS X] Open the file and edit it
system("open ~/.Rprofile")
Note: Please be aware of newline character inconsistencies across different operating systems.
π§ Troubleshooting for instllation of this package
Fix Corrupted Help Database Error
If you encounter: Error in fetch(key): lazy-load database '...chatAI4R.rdb' is corrupt
Cause: Package help database (.rdb file) corruption due to incomplete installation, system crash during loading, or R version upgrade.
Quick Fix:
# Automated repair (removes corrupted install, reinstalls from GitHub, verifies)
system.file("rebuild_package.R", package = "chatAI4R") |> source()
# Then restart R
.rs.restartR() # RStudio: or Session > Restart R (Ctrl+Shift+F10)
Manual alternative:
remove.packages("chatAI4R")
remotes::install_github("kumeS/chatAI4R", force = TRUE)
.rs.restartR()
π Quick Start
Basic Usage
library(chatAI4R)
# 1. One-shot chat
chat4R("Explain linear regression assumptions")
# 2. Conversation with memory
conversation4R("What's the best clustering algorithm for this data?")
conversation4R("It has 10,000 samples and 50 features")
# 3. R package development
autocreateFunction4R(
FunctionName = "calculate_fold_change",
specification = "Calculate log2 fold change with error handling"
)
# β Generates function + Roxygen2 documentation
Advanced Features
Statistical Interpretation (13+ domains):
model <- lm(mpg ~ wt + hp, data = mtcars)
interpretResult(summary(model), domain = "Regression Analysis")
Multi-Expert Discussion:
discussion_flow_v1(
title = "RNA-seq analysis strategy",
expert1 = "Bioinformatics Specialist",
expert2 = "Statistical Geneticist"
)
π‘ Use Cases
R Package Development: Design packages, generate functions with Roxygen2 docs, debug errors
Data Analysis: Interpret statistical results, process literature, extract insights
Multi-Model Comparison: Compare 23+ LLM responses for robust analysis
Tutorial
Basic usage
Testing
chatAI4R includes a comprehensive automated testing framework:
- Test Coverage: 52/52 functions testable (96%+ comprehensive coverage)
- Base Tests: 14 core functions for quick validation (~9 seconds)
- Extended Tests: Phase 1-5 suites covering all function categories (~50 seconds)
- CI/CD Ready: Automated testing on Windows, macOS, and Linux via GitHub Actions
Running Tests
# Quick validation (recommended for daily development)
source("tests/test/run_all_tests.R")
results <- run_all_tests()
# Comprehensive testing (before releases)
source("tests/test/phase1_tests.R")
p1_results <- run_phase1_tests()
# ... continue with phase2-5
See tests/test/README.md for detailed documentation.
Applied usage of the chatAI4R package
- AI-based chatting loaded with highly-technical documents (RIKEN Pressrelease text)
Prompts for chatGPT / GPT-4
| File |
Description |
Prompt |
| create_flowcharts |
A prompt to create a flowchart |
Prompt |
| create_roxygen2_v01 |
A prompt to create a roxygen2 description |
Prompt |
| create_roxygen2_v02 |
A prompt to create a roxygen2 description |
Prompt |
| edit_DESCRIPTION |
A prompt to edit DESCRIPTION |
Prompt |
| Img2txt_prompt_v01 |
A prompt to create a i2i prompt |
Prompt |
| Img2txt_prompt_v02 |
A prompt to create a i2i prompt |
Prompt |
π Function Reference
chatAI4R provides 54 functions organized in a 4-layer architecture. Below are the most commonly used functions. For a complete function list, see Full Function Reference.
π― Most Used Functions
Getting Started:
chat4R() - One-shot chat with GPT models (OpenAI)
conversation4R() - Multi-turn conversations with memory
gemini4R() - Chat with Google Gemini models
multiLLMviaionet() - Compare 23+ models simultaneously
Data Analysis:
interpretResult() - AI-powered statistical interpretation (13 domains)
TextSummary() - Intelligent text summarization
extractKeywords() - Extract key concepts from text
R Development:
autocreateFunction4R() - Generate R functions with documentation
addRoxygenDescription() - Add Roxygen2 documentation
checkErrorDet() - Explain R error messages
Advanced Workflows:
discussion_flow_v1() - Multi-expert AI discussion simulation
geminiGrounding4R() - AI with Google Search grounding
textFileInput4ai() - Process large text files
π Full Function Reference
The chatAI4R package is structured as 4 Layered Functions that provide increasingly sophisticated AI capabilities, from basic API access to expert-level data mining and analysis.
π’ Layer 1: Core Functions (API Access) - Click to expand
Core functions provide direct access to multiple AI APIs, enabling basic AI operations.
|Function|Description|API Service|Script|Flowchart|
|:---|:---|:---|:---:|:---:|
|chat4R|Chat with GPT models using OpenAI API (One-shot)|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/chat4R.R)|[Flowchart](https://github.com/kumeS/chatAI4R/blob/main/inst/flowchart/chat4R.png)|
|chat4R_history|Use chat history for OpenAI's GPT model|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/chat4R_history.R)|[Flowchart](https://github.com/kumeS/chatAI4R/blob/main/inst/flowchart/chat4R_history.png)|
|chat4R_streaming|Chat with GPT models using streaming response|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/chat4R_streaming.R)||
|chat4Rv2|Enhanced chat interface with system prompt support|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/chat4Rv2.R)||
|textEmbedding|Text Embedding from OpenAI Embeddings API (1536-dimensional)|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/textEmbedding.R)|[Flowchart](https://github.com/kumeS/chatAI4R/blob/main/inst/flowchart/textEmbedding.png)|
|vision4R|Advanced image analysis and interpretation|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/vision4R.R)||
|gemini4R|Chat with Google Gemini AI models|Google Gemini|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/gemini4R.R)||
|replicatellmAPI4R|Access various LLM models through Replicate platform|Replicate|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/replicateAPI4R.R)||
|DifyChat4R|Chat and completion endpoints through Dify platform|Dify|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/DifyChat4R.R)||
|multiLLMviaionet|Execute multiple LLM models simultaneously via io.net API|io.net|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/multiLLMviaionet.R)||
|list_ionet_models|List available LLM models on io.net platform|io.net|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/multiLLMviaionet.R)||
|multiLLM_random10|Quick execution of 10 randomly selected models via io.net|io.net|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/multiLLMviaionet.R)||
|multiLLM_random5|Quick execution of 5 randomly selected models via io.net|io.net|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/multiLLMviaionet.R)||
|completions4R|β οΈ **DEPRECATED** - Generate text using OpenAI completions API (scheduled for removal)|OpenAI|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/completions4R.R)|[Flowchart](https://github.com/kumeS/chatAI4R/blob/main/inst/flowchart/completions4R.png)|
**Utility Functions (Non-API)**
|Function|Description|Script|
|:---|:---|:---:|
|slow_print_v2|Slowly print text with typewriter effect|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/slow_print_v2.R)|
|ngsub|Remove extra spaces and newline characters|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/ngsub.R)|
|removeQuotations|Remove all types of quotations from text|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/removeQuotations.R)|
|speakInEN|Text-to-speech functionality for English|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/speakInEN.R)|
|speakInJA|Text-to-speech functionality for Japanese|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/speakInJA.R)|
|speakInJA_v2|Enhanced text-to-speech functionality for Japanese|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/speakInJA_v2.R)|
π‘ Layer 2: Usage/Task Functions - Click to expand
### π‘ 2nd Layered Functions (Usage/Task)
**Execution of simple LLM tasks: Chat memory, translation, proofreading, etc.**
These functions combine core APIs to perform specific tasks and maintain conversation context.
|Function|Description|Script|Flowchart|
|:---|:---|:---:|:---:|
|conversation4R|Manage conversation with persistent history|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/conversation4R.R)|[Flowchart](https://github.com/kumeS/chatAI4R/blob/main/inst/flowchart/conversation4R.png)|
|TextSummary|Summarize long texts with intelligent chunking|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/TextSummary.R)||
|TextSummaryAsBullet|Summarize selected text into bullet points|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/TextSummaryAsBullet.R)||
|revisedText|Revision for scientific text with AI assistance|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/RevisedText.R)||
|proofreadEnglishText|Proofread English text via RStudio API|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/proofreadEnglishText.R)||
|proofreadText|Proofread text with grammar and style correction|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/proofreadText.R)||
|enrichTextContent|Enrich text content with additional information|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/enrichTextContent.R)||
|convertBullet2Sentence|Convert bullet points to sentences|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/convertBullet2Sentence.R)||
π Layer 3: Workflow Functions - Click to expand
### π 3rd Layered Functions (Workflow)
**LLM Workflow, LLM Bots, R Packaging Supports**
Advanced workflow functions that orchestrate multiple AI operations and support complex development tasks.
|Function|Description|Script|
|:---|:---|:---:|
|discussion_flow_v1|Multi-agent expert system simulation (3 roles)|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/discussion_flow_v1.R)|
|discussion_flow_v2|Enhanced multi-bot conversation system|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/discussion_flow_v2.R)|
|createSpecifications4R|Create detailed specifications for R functions|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/createSpecifications4R.R)|
|createRfunction|Create R functions from selected text or clipboard|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/createRfunction.R)|
|createRcode|Generate R code from clipboard content|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/createRcode.R)|
|convertRscript2Function|Convert R script to structured R function|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/convertRscript2Function.R)|
|addRoxygenDescription|Add Roxygen documentation to R functions|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/addRoxygenDescription.R)|
|OptimizeRcode|Optimize and complete R code|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/OptimizeRcode.R)|
|RcodeImprovements|Suggest improvements for R code from clipboard|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/RcodeImprovements.R)|
|designPackage|Design complete R packages|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/designPackage.R)|
|addCommentCode|Add intelligent comments to R code (supports OpenAI & Gemini)|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/addCommentCode.R)|
|checkErrorDet|Analyze and explain R error messages|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/checkErrorDet.R)|
|checkErrorDet_JP|Analyze and explain R error messages (Japanese)|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/checkErrorDet_JP.R)|
|autocreateFunction4R|β¨ **UPDATED** - Generate and improve R functions (now uses chat4R)|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/autocreateFunction4R.R)|
|supportIdeaGeneration|Support idea generation from text input|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/supportIdeaGeneration.R)|
|createEBAYdes|Create professional eBay product descriptions|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/create_eBay_Description.R)|
|createImagePrompt_v1|Create image generation prompts|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/createImagePrompt_v1.R)|
|createImagePrompt_v2|Enhanced image generation prompts|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/createImagePrompt_v2.R)|
π΄ Layer 4: Expertise Functions - Click to expand
### π΄ 4th Layered Functions (Expertise)
**Data mining & Advanced Analysis**
Expert-level functions that provide sophisticated data analysis, pattern recognition, and knowledge extraction capabilities.
|Function|Description|Script|
|:---|:---|:---:|
|interpretResult|Interpret analysis results across 13 analytical domains|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/interpretResult.R)|
|extractKeywords|Extract key concepts and terms from complex text|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/extractKeywords.R)|
|convertScientificLiterature|Convert text to scientific literature format|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/convertScientificLiterature.R)|
|geminiGrounding4R|Advanced AI with Google Search grounding|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/geminiGrounding4R.R)|
|textFileInput4ai|Large-scale text file analysis with chunking|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/textFileInput4ai.R)|
|searchFunction|Expert-level R function discovery and recommendation|[Script](https://github.com/kumeS/chatAI4R/blob/main/R/searchFunction.R)|
Functions for RIKEN press release (future developments)
- get_riken_pressrelease_urls: Get URLs of RIKEN Press Releases
- riken_pressrelease_text_jpn: Extract text from RIKEN press-release (Japanese)
- riken_pressrelease_textEmbedding: Extract text and perform text embedding from RIKEN press-release
π» Additional Examples
Multi-LLM Execution via io.net
Execute multiple LLM models simultaneously for comprehensive AI responses across 23+ cutting-edge models.
# Set io.net API key
Sys.setenv(IONET_API_KEY = "your-ionet-api-key")
# Basic multi-LLM execution with latest 2025 models
result <- multiLLMviaionet(
prompt = "Explain quantum computing",
models = c("deepseek-ai/DeepSeek-R1-0528", # Latest reasoning model
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", # Llama 4 multimodal
"Qwen/Qwen3-235B-A22B-FP8", # Latest Qwen3 MoE
"mistralai/Magistral-Small-2506", # Advanced multilingual
"microsoft/phi-4") # Compact powerhouse
)
# π² Quick random 10 model comparison (balanced across families)
result <- multiLLM_random10("What is artificial intelligence?")
# β‘ Quick random 5 model comparison (for faster testing)
result <- multiLLM_random5("Write a Python function")
# π Explore available models (23+ total as of 2025)
all_models <- list_ionet_models()
print(paste("Total models available:", length(all_models)))
# π·οΈ Browse by category
llama_models <- list_ionet_models("llama") # Meta Llama series (3 models)
deepseek_models <- list_ionet_models("deepseek") # DeepSeek reasoning (4 models)
qwen_models <- list_ionet_models("qwen") # Alibaba Qwen series (2 models)
mistral_models <- list_ionet_models("mistral") # Mistral AI series (4 models)
compact_models <- list_ionet_models("compact") # Efficient models (4 models)
reasoning_models <- list_ionet_models("reasoning") # Math/logic specialists (2 models)
# π Detailed model information
detailed_info <- list_ionet_models(detailed = TRUE)
View(detailed_info)
# π Advanced usage with custom parameters
result <- multiLLMviaionet(
prompt = "Design a machine learning pipeline for time series forecasting",
max_models = 8,
random_selection = TRUE,
temperature = 0.3, # More deterministic for technical tasks
max_tokens = 2000, # Longer responses
streaming = FALSE, # Wait for complete responses
parallel = TRUE, # True async execution
verbose = TRUE # Monitor progress
)
# Access comprehensive results
print(result$summary) # Execution statistics
lapply(result$results, function(x) { # Individual model responses
if(x$success) cat(x$model, ":", substr(x$response, 1, 200), "...\n\n")
})
π₯ Featured Models (2025):
- DeepSeek-R1-0528: Latest reasoning model with o1-like capabilities
- Llama-4-Maverick: Multimodal model with 128 experts architecture
- Qwen3-235B: Advanced MoE with 235B parameters
- Magistral-Small-2506: European AI with multilingual support
- Phi-4: Microsoftβs efficient 14B parameter model
π Whatβs New
π§ Version 1.1.0 (October 2025) - Linux Installation Fix
Breaking Change for Better Compatibility:
- Removed pdftools Dependency: Eliminated the optional
pdftools dependency that was causing Linux installation failures due to missing system libraries (libqpdf-dev)
- Simplified Installation: Linux users can now install chatAI4R without any system library dependencies
- Function Removal:
chatAI4pdf() function has been removed from the package (available as standalone script in inst/sh/)
CI/CD Integration:
- Multi-Platform Testing: Added GitHub Actions workflow for automated testing on Windows, macOS, and Linux
- Test Framework: Comprehensive test suite with 6 test files covering 52/52 functions (96% coverage)
- Continuous Integration: R CMD check runs automatically on push/PR to main, master, and dev branches
- Quality Assurance: Ensures package builds correctly across all major platforms
Installation Improvements:
- β
Before v1.1.0 (Linux): Required system libraries β Installation errors
- β
After v1.1.0 (Linux): No system dependencies β Simple
install.packages("chatAI4R")
Impact:
- 53 Core Functions: All AI, LLM, and R development functions work normally
- No Breaking Changes: Only the optional PDF processing function was removed
- Better User Experience: Eliminates the most common Linux installation error
π Version 1.0.0 (January 2025) - Security & Multi-LLM
π Security Enhancements
- Critical Security Fixes: Resolved HTTP status validation issues across all API functions
- Safe Data Access: Implemented null-safe nested JSON parsing to prevent runtime crashes
- Enhanced Error Handling: Comprehensive error messages without API key exposure
- Input Validation: Standardized parameter validation using assertthat patterns
- Security Score: Improved from C+ (60/100) to A- (85/100)
π New Multi-LLM Capabilities
- io.net Integration: Execute 23+ models simultaneously via io.net API
- Advanced Model Selection: Random balanced selection across model families
- True Async Processing: Parallel execution using future package
- Comprehensive Testing: Enhanced test suite with 52 functions testable (96% coverage)
π οΈ Developer Experience
- 54 Functions: Complete AI toolkit for R with enhanced coverage
- Enhanced Documentation: Comprehensive examples and usage patterns
- CRAN Ready: Production-quality codebase with consistent patterns
- 25 RStudio Addins: Integrated development workflow
π Function Categories
- Core Layer: 19 functions for direct API access and utilities
- Usage/Task Layer: 8 functions for conversation management and text processing
- Workflow Layer: 18 functions for R package development and content creation
- Expertise Layer: 7 functions for advanced data analysis and knowledge mining (PDF function removed in v1.1.0)
License
Copyright (c) 2025 Satoshi Kume. Released under the Artistic License 2.0.
Cite
Kume S. (2025) chatAI4R: Chat-based Interactive Artificial Intelligence for R. Version 1.1.0.
#BibTeX
@misc{Kume2025chatAI4R,
title={chatAI4R: Chat-Based Interactive Artificial Intelligence for R},
author={Kume, Satoshi},
year={2025},
version={1.1.0},
publisher={GitHub},
note={R Package with Multi-LLM Capabilities},
howpublished={\url{https://github.com/kumeS/chatAI4R}},
}
Contributors